Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Die Primfaktoren von sind .
Schritt 2.4.1
hat Faktoren von und .
Schritt 2.4.2
hat Faktoren von und .
Schritt 2.5
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.6
hat Faktoren von und .
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.8
Multipliziere .
Schritt 2.8.1
Mutltipliziere mit .
Schritt 2.8.2
Mutltipliziere mit .
Schritt 2.9
Der Teiler von ist selbst.
occurs time.
Schritt 2.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.11
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.2
Forme den Ausdruck um.
Schritt 3.2.1.3
Wende das Distributivgesetz an.
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.1.5
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.5.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.5.2
Faktorisiere aus heraus.
Schritt 3.2.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.5.4
Forme den Ausdruck um.
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 3.2.1.7
Wende das Distributivgesetz an.
Schritt 3.2.1.8
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.4
Forme den Ausdruck um.
Schritt 3.3.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 4.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.1.2
Addiere und .
Schritt 4.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 4.2.1
Schreibe als um.
Schritt 4.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.2.3
Schreibe das Polynom neu.
Schritt 4.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4.3
Setze gleich .
Schritt 4.4
Addiere zu beiden Seiten der Gleichung.