Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.2.2
Dividiere durch .
Schritt 4.3
Vereinfache die rechte Seite.
Schritt 4.3.1
Vereinfache jeden Term.
Schritt 4.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 4.3.1.2
Schreibe als um.
Schritt 4.3.1.3
Dividiere durch .
Schritt 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 6
Schritt 6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3
Faktorisiere aus heraus.
Schritt 6.3.1
Faktorisiere aus heraus.
Schritt 6.3.2
Faktorisiere aus heraus.
Schritt 6.3.3
Faktorisiere aus heraus.
Schritt 6.4
Schreibe als um.
Schritt 6.5
Vereinfache den Zähler.
Schritt 6.5.1
Schreibe als um.
Schritt 6.5.1.1
Schreibe als um.
Schritt 6.5.1.2
Schreibe als um.
Schritt 6.5.2
Ziehe Terme aus der Wurzel heraus.
Schritt 6.5.3
Potenziere mit .
Schritt 6.6
Mutltipliziere mit .
Schritt 6.7
Vereinige und vereinfache den Nenner.
Schritt 6.7.1
Mutltipliziere mit .
Schritt 6.7.2
Potenziere mit .
Schritt 6.7.3
Potenziere mit .
Schritt 6.7.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.7.5
Addiere und .
Schritt 6.7.6
Schreibe als um.
Schritt 6.7.6.1
Benutze , um als neu zu schreiben.
Schritt 6.7.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.7.6.3
Kombiniere und .
Schritt 6.7.6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.7.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.7.6.4.2
Forme den Ausdruck um.
Schritt 6.7.6.5
Vereinfache.
Schritt 6.8
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 7
Schritt 7.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.