Grundlegende Mathematik Beispiele

z 구하기 5z(z-2)=(z-2)^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Forme um.
Schritt 1.2
Vereinfache durch Addieren von Nullen.
Schritt 1.3
Wende das Distributivgesetz an.
Schritt 1.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Bewege .
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.5
Mutltipliziere mit .
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende das Distributivgesetz an.
Schritt 2.2.2
Wende das Distributivgesetz an.
Schritt 2.2.3
Wende das Distributivgesetz an.
Schritt 2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Mutltipliziere mit .
Schritt 2.3.1.2
Bringe auf die linke Seite von .
Schritt 2.3.1.3
Mutltipliziere mit .
Schritt 2.3.2
Subtrahiere von .
Schritt 3
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3
Subtrahiere von .
Schritt 3.4
Addiere und .
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.1.4
Faktorisiere aus heraus.
Schritt 5.1.5
Faktorisiere aus heraus.
Schritt 5.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.1.2
Schreibe um als plus
Schritt 5.2.1.1.3
Wende das Distributivgesetz an.
Schritt 5.2.1.1.4
Mutltipliziere mit .
Schritt 5.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 5.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 5.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 5.2.2
Entferne unnötige Klammern.
Schritt 6
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze gleich .
Schritt 7.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 7.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.2.1.2
Dividiere durch .
Schritt 7.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Setze gleich .
Schritt 8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 9
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 10
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: