Grundlegende Mathematik Beispiele

z 구하기 8(2-z)^2=2(8-z)^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.1.3
Mutltipliziere mit .
Schritt 1.3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.5.1
Bewege .
Schritt 1.3.1.5.2
Mutltipliziere mit .
Schritt 1.3.1.6
Mutltipliziere mit .
Schritt 1.3.1.7
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 1.4
Wende das Distributivgesetz an.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Mutltipliziere mit .
Schritt 1.5.2
Mutltipliziere mit .
Schritt 2
Da auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass es auf der linken Seite ist.
Schritt 3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende das Distributivgesetz an.
Schritt 3.2.2
Wende das Distributivgesetz an.
Schritt 3.2.3
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Mutltipliziere mit .
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 3.3.1.3
Mutltipliziere mit .
Schritt 3.3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.5.1
Bewege .
Schritt 3.3.1.5.2
Mutltipliziere mit .
Schritt 3.3.1.6
Mutltipliziere mit .
Schritt 3.3.1.7
Mutltipliziere mit .
Schritt 3.3.2
Subtrahiere von .
Schritt 3.4
Wende das Distributivgesetz an.
Schritt 3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Mutltipliziere mit .
Schritt 3.5.2
Mutltipliziere mit .
Schritt 4
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Addiere und .
Schritt 4.4
Subtrahiere von .
Schritt 5
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2
Subtrahiere von .
Schritt 6
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Teile jeden Ausdruck in durch .
Schritt 6.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.2
Dividiere durch .
Schritt 6.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Dividiere durch .
Schritt 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 8
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 9
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 9.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 9.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.