Grundlegende Mathematik Beispiele

a 구하기 a^2+(2b+6)^2=(2c+4)^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Forme um.
Schritt 1.2
Schreibe als um.
Schritt 1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Wende das Distributivgesetz an.
Schritt 1.4
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.2.1
Bewege .
Schritt 1.4.1.2.2
Mutltipliziere mit .
Schritt 1.4.1.3
Mutltipliziere mit .
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Mutltipliziere mit .
Schritt 1.4.1.6
Mutltipliziere mit .
Schritt 1.4.2
Addiere und .
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe als um.
Schritt 4.1.2
Schreibe als um.
Schritt 4.1.3
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.1.4
Schreibe das Polynom neu.
Schritt 4.1.5
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere und .
Schritt 4.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Faktorisiere aus heraus.
Schritt 4.3.2.3
Faktorisiere aus heraus.
Schritt 4.3.2.4
Faktorisiere aus heraus.
Schritt 4.3.2.5
Faktorisiere aus heraus.
Schritt 4.3.3
Wende das Distributivgesetz an.
Schritt 4.3.4
Mutltipliziere mit .
Schritt 4.3.5
Mutltipliziere mit .
Schritt 4.3.6
Subtrahiere von .
Schritt 4.3.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.7.1
Faktorisiere aus heraus.
Schritt 4.3.7.2
Faktorisiere aus heraus.
Schritt 4.3.7.3
Faktorisiere aus heraus.
Schritt 4.3.7.4
Faktorisiere aus heraus.
Schritt 4.3.7.5
Faktorisiere aus heraus.
Schritt 4.3.8
Mutltipliziere mit .
Schritt 4.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Schreibe als um.
Schritt 4.4.2
Füge Klammern hinzu.
Schritt 4.5
Ziehe Terme aus der Wurzel heraus.
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.