Grundlegende Mathematik Beispiele

Vereinfache (1/z-1/y)/(1/(z^3)-1/(y^3))
Schritt 1
Multiply the numerator and denominator of the fraction by .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.4
Forme den Ausdruck um.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.4.4
Forme den Ausdruck um.
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Bringe auf die linke Seite von .
Schritt 4.3
Schreibe als um.
Schritt 5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe als um.
Schritt 5.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Summe kubischer Terme, , wobei und .
Schritt 5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bringe auf die linke Seite von .
Schritt 5.3.2
Schreibe als um.
Schritt 5.3.3
Bringe auf die linke Seite von .
Schritt 5.3.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.3.5
Mutltipliziere mit .
Schritt 5.3.6
Mutltipliziere mit .
Schritt 5.3.7
Bringe auf die linke Seite von .
Schritt 5.3.8
Schreibe als um.
Schritt 5.3.9
Wende die Produktregel auf an.
Schritt 5.3.10
Potenziere mit .
Schritt 5.3.11
Mutltipliziere mit .
Schritt 6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor.
Schritt 6.2
Forme den Ausdruck um.