Algebra Beispiele

Ermittle die Symmetrieachse y=-1/8(x-4)^2
Schritt 1
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 2
Da der Wert von negativ ist, ist die Parabel nach unten geöffnet.
Öffnet nach unten
Schritt 3
Ermittle den Scheitelpunkt .
Schritt 4
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 4.2
Setze den Wert von in die Formel ein.
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Schreibe als um.
Schritt 4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Faktorisiere aus heraus.
Schritt 4.3.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.3
Forme den Ausdruck um.
Schritt 4.3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Mutltipliziere mit .
Schritt 5
Ermittle den Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 5.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 6
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 7