Algebra Beispiele

Löse die Matrixgleichung [[x+3y],[y]]=[[17],[x-4]]
Schritt 1
Write as a linear system of equations.
Schritt 2
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Ersetze alle in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.2
Addiere und .
Schritt 2.2
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.1.2
Addiere und .
Schritt 2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.1.2
Dividiere durch .
Schritt 2.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Ersetze alle in durch .
Schritt 2.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.2.1.2
Kombiniere und .
Schritt 2.3.2.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.1.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.4.1
Mutltipliziere mit .
Schritt 2.3.2.1.4.2
Subtrahiere von .
Schritt 2.4
Liste alle Lösungen auf.