Algebra Beispiele

Bestimme die Symmetrie f(x)=7x^3-x
Schritt 1
Stelle fest, ob die Funktion ungerade, gerade oder keines von beidem ist, um die Symmetrie zu ermitteln.
1. Wenn ungerade, dann ist die Funktion symmetrisch zum Ursprung.
1. Wenn gerade, dann ist die Funktion symmetrisch zur y-Achse.
Schritt 2
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ermittle durch Einsetzen von in für jedes .
Schritt 2.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die Produktregel auf an.
Schritt 2.2.2
Potenziere mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.2.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Mutltipliziere mit .
Schritt 2.2.4.2
Mutltipliziere mit .
Schritt 3
Eine Funktion ist gerade, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Prüfe, ob .
Schritt 3.2
Da , ist die Funktion nicht gerade.
Die Funktion ist nicht gerade
Die Funktion ist nicht gerade
Schritt 4
Eine Funktion ist ungerade, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Wende das Distributivgesetz an.
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.2
Da , ist die Funktion ungerade.
Die Funktion ist ungerade
Die Funktion ist ungerade
Schritt 5
Da die Funktion ungerade ist, ist sie punktsymmetrisch zum Ursprung.
Punktsymmetrie zum Ursprung
Schritt 6
Da die Funktion nicht gerade ist, ist sie nicht zur y-Achse symmetrisch.
Kein Schnittpunkt mit der y-Achse
Schritt 7
Ermittle das Symmetrieverhalten der Funktion.
Punktsymmetrie zum Ursprung
Schritt 8