Algebra Beispiele

Lösen mithilfe quadratischer Ergänzung x^2-5x=8
Schritt 1
Um auf der linken Seite ein Quadrat-Trinom zu bilden, ermittele einen Wert der gleich dem Quadrat der Hälfte von ist.
Schritt 2
Addiere den Ausdruck zu jeder Seite der Gleichung.
Schritt 3
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1.1
Wende die Produktregel auf an.
Schritt 3.1.1.1.2
Wende die Produktregel auf an.
Schritt 3.1.1.2
Potenziere mit .
Schritt 3.1.1.3
Mutltipliziere mit .
Schritt 3.1.1.4
Potenziere mit .
Schritt 3.1.1.5
Potenziere mit .
Schritt 3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.1.1.2
Wende die Produktregel auf an.
Schritt 3.2.1.1.2
Potenziere mit .
Schritt 3.2.1.1.3
Mutltipliziere mit .
Schritt 3.2.1.1.4
Potenziere mit .
Schritt 3.2.1.1.5
Potenziere mit .
Schritt 3.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.1.3
Kombiniere und .
Schritt 3.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Mutltipliziere mit .
Schritt 3.2.1.5.2
Addiere und .
Schritt 4
Faktorisiere das perfekte Trinom-Quadrat zu .
Schritt 5
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Schreibe als um.
Schritt 5.2.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Schreibe als um.
Schritt 5.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.3
Addiere zu beiden Seiten der Gleichung.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: