Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Vereinfache .
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4
Vereinfache jeden Term.
Schritt 5.2.4.1
Wende das Distributivgesetz an.
Schritt 5.2.4.2
Mutltipliziere mit .
Schritt 5.2.5
Vereinfache Terme.
Schritt 5.2.5.1
Subtrahiere von .
Schritt 5.2.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.2.5.2.1
Addiere und .
Schritt 5.2.5.2.2
Addiere und .
Schritt 5.2.5.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.3.2
Dividiere durch .
Schritt 5.3
Berechne .
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Schritt 5.3.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.3.3.2
Kombiniere und .
Schritt 5.3.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.3.4
Vereinfache den Zähler.
Schritt 5.3.3.4.1
Mutltipliziere mit .
Schritt 5.3.3.4.2
Subtrahiere von .
Schritt 5.3.3.5
Wende das Distributivgesetz an.
Schritt 5.3.3.6
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.6.2
Forme den Ausdruck um.
Schritt 5.3.3.7
Kürze den gemeinsamen Faktor von .
Schritt 5.3.3.7.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.7.2
Forme den Ausdruck um.
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 5.3.4.1
Addiere und .
Schritt 5.3.4.2
Addiere und .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .