Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.2
Faktorisiere aus heraus.
Schritt 2.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.2
Schreibe als um.
Schritt 2.1.3
Schreibe als um.
Schritt 2.1.4
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.1.5
Faktorisiere.
Schritt 2.1.5.1
Vereinfache.
Schritt 2.1.5.1.1
Schreibe als um.
Schritt 2.1.5.1.2
Faktorisiere.
Schritt 2.1.5.1.2.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.1.5.1.2.2
Entferne unnötige Klammern.
Schritt 2.1.5.2
Entferne unnötige Klammern.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4.2.3
Schreibe als um.
Schritt 2.4.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.4.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Setze gleich und löse nach auf.
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 4