Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Wende die quadratische Ergänzung auf an.
Schritt 1.2.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.2.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.2.3
Ermittle den Wert von mithilfe der Formel .
Schritt 1.2.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.3.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2.2
Forme den Ausdruck um.
Schritt 1.2.3.2.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.2.3
Multipliziere .
Schritt 1.2.3.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2.3.2
Mutltipliziere mit .
Schritt 1.2.4
Ermittle den Wert von mithilfe der Formel .
Schritt 1.2.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Schritt 1.2.4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.2.4.2.1.2
Vereinfache den Nenner.
Schritt 1.2.4.2.1.2.1
Mutltipliziere mit .
Schritt 1.2.4.2.1.2.2
Kombiniere und .
Schritt 1.2.4.2.1.3
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 1.2.4.2.1.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.2.4.2.1.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.4.2.1.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.2.4.2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.2.4.2.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2.1.3.1.2.3
Forme den Ausdruck um.
Schritt 1.2.4.2.1.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4.2.1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.4.2.1.5
Multipliziere .
Schritt 1.2.4.2.1.5.1
Mutltipliziere mit .
Schritt 1.2.4.2.1.5.2
Mutltipliziere mit .
Schritt 1.2.4.2.1.5.3
Mutltipliziere mit .
Schritt 1.2.4.2.2
Addiere und .
Schritt 1.2.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.3
Setze gleich der neuen rechten Seite.
Schritt 2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 3
Ermittle den Scheitelpunkt .
Schritt 4
Schritt 4.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 4.2
Setze den Wert von in die Formel ein.
Schritt 4.3
Vereinfache.
Schritt 4.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.1.1
Schreibe als um.
Schritt 4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.3.1
Faktorisiere aus heraus.
Schritt 4.3.3.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2.3
Forme den Ausdruck um.
Schritt 4.3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.3.5
Multipliziere .
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Die Leitlinie einer Parabel ist die vertikale Gerade, die durch Subtrahieren von von der x-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach links oder rechts geöffnet ist.
Schritt 5.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 6