Algebra Beispiele

Ermittle den Maximum-/Minimumwert y=-x^2-x+6
Schritt 1
Das Maximum einer quadratischen Funktion tritt bei auf. Wenn negativ ist, ist der Maximalwert der Funktion .
tritt auf bei
Schritt 2
Ermittele den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die Werte von und ein.
Schritt 2.2
Entferne die Klammern.
Schritt 2.3
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.1.2
Wende die Produktregel auf an.
Schritt 3.2.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Bewege .
Schritt 3.2.1.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.2.1
Potenziere mit .
Schritt 3.2.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.2.3
Addiere und .
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.1.4
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.5
Potenziere mit .
Schritt 3.2.1.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.6.1
Mutltipliziere mit .
Schritt 3.2.1.6.2
Mutltipliziere mit .
Schritt 3.2.2
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Mutltipliziere mit .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.2.2.4
Mutltipliziere mit .
Schritt 3.2.2.5
Mutltipliziere mit .
Schritt 3.2.2.6
Mutltipliziere mit .
Schritt 3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Addiere und .
Schritt 3.2.4.3
Addiere und .
Schritt 3.2.5
Die endgültige Lösung ist .
Schritt 4
Benutze die - und -Werte, um zu ermitteln, wo das Maximum auftritt.
Schritt 5