Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Schritt 2.1.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.1.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.1.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.1.3
Schreibe als um.
Schritt 2.1.4
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 2.1.5
Faktorisiere.
Schritt 2.1.5.1
Vereinfache.
Schritt 2.1.5.1.1
Mutltipliziere mit .
Schritt 2.1.5.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.1.5.2
Entferne unnötige Klammern.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Schritt 2.5.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.5.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5.2.3
Vereinfache.
Schritt 2.5.2.3.1
Vereinfache den Zähler.
Schritt 2.5.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.5.2.3.1.2
Multipliziere .
Schritt 2.5.2.3.1.2.1
Mutltipliziere mit .
Schritt 2.5.2.3.1.2.2
Mutltipliziere mit .
Schritt 2.5.2.3.1.3
Subtrahiere von .
Schritt 2.5.2.3.1.4
Schreibe als um.
Schritt 2.5.2.3.1.5
Schreibe als um.
Schritt 2.5.2.3.1.6
Schreibe als um.
Schritt 2.5.2.3.2
Mutltipliziere mit .
Schritt 2.5.2.4
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3