Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache den Zähler.
Schritt 1.3.1.1
Potenziere mit .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.1.3
Wende das Distributivgesetz an.
Schritt 1.3.1.4
Mutltipliziere mit .
Schritt 1.3.1.5
Addiere und .
Schritt 1.3.1.6
Faktorisiere aus heraus.
Schritt 1.3.1.6.1
Faktorisiere aus heraus.
Schritt 1.3.1.6.2
Faktorisiere aus heraus.
Schritt 1.3.1.6.3
Faktorisiere aus heraus.
Schritt 1.3.1.7
Schreibe als um.
Schritt 1.3.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.3.3
Vereinfache .
Schritt 1.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.4.1
Vereinfache den Zähler.
Schritt 1.4.1.1
Potenziere mit .
Schritt 1.4.1.2
Mutltipliziere mit .
Schritt 1.4.1.3
Wende das Distributivgesetz an.
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Addiere und .
Schritt 1.4.1.6
Faktorisiere aus heraus.
Schritt 1.4.1.6.1
Faktorisiere aus heraus.
Schritt 1.4.1.6.2
Faktorisiere aus heraus.
Schritt 1.4.1.6.3
Faktorisiere aus heraus.
Schritt 1.4.1.7
Schreibe als um.
Schritt 1.4.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.4.3
Vereinfache .
Schritt 1.4.4
Ändere das zu .
Schritt 1.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.5.1
Vereinfache den Zähler.
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.1.3
Wende das Distributivgesetz an.
Schritt 1.5.1.4
Mutltipliziere mit .
Schritt 1.5.1.5
Addiere und .
Schritt 1.5.1.6
Faktorisiere aus heraus.
Schritt 1.5.1.6.1
Faktorisiere aus heraus.
Schritt 1.5.1.6.2
Faktorisiere aus heraus.
Schritt 1.5.1.6.3
Faktorisiere aus heraus.
Schritt 1.5.1.7
Schreibe als um.
Schritt 1.5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Vereinfache .
Schritt 1.5.4
Ändere das zu .
Schritt 1.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2
Um ein Polynom in Normalform zu schreiben, vereinfache es und ordne die Terme dann in absteigender Folge.
Schritt 3
Die Standardform ist .
Schritt 4