Algebra Beispiele

Ermittle die Nullstellen und ihre Multiplizitäten f(x)=-x^5+9x^4-18x^3
Schritt 1
Setze gleich .
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.2
Faktorisiere aus heraus.
Schritt 2.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.1.4
Faktorisiere aus heraus.
Schritt 2.1.1.5
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.1.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 2.1.2.2
Entferne unnötige Klammern.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Schreibe als um.
Schritt 2.3.2.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen. Die Multiplizität einer Wurzel gibt an, wie oft die Wurzel auftritt.
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
Schritt 3