Algebra Beispiele

Ermittle die Umkehrfunktion y=4^(2x+9)
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 2.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.5
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 2.6
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.7
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Teile jeden Ausdruck in durch .
Schritt 2.7.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.2.1.2
Forme den Ausdruck um.
Schritt 2.7.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.2.2.2
Dividiere durch .
Schritt 2.7.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.3.1.1.2
Forme den Ausdruck um.
Schritt 2.7.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 4.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.2.2
Forme den Ausdruck um.
Schritt 4.2.4
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.4.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.2.1
Addiere und .
Schritt 4.2.4.2.2
Addiere und .
Schritt 4.2.4.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.3.2
Dividiere durch .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.3.3.1.2
Potenziere mit .
Schritt 4.3.3.2
Wende das Distributivgesetz an.
Schritt 4.3.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.3.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.3.3
Forme den Ausdruck um.
Schritt 4.3.3.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.4.1
Kombiniere und .
Schritt 4.3.3.4.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Addiere und .
Schritt 4.3.4.2
Addiere und .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .