Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Schritt 2.1
Schreibe als um.
Schritt 2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Schritt 3.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Schreibe um als plus
Schritt 3.1.3
Wende das Distributivgesetz an.
Schritt 3.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 3.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2
Forme den Ausdruck um.
Schritt 5
Schritt 5.1
Faktorisiere aus heraus.
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.3
Faktorisiere aus heraus.
Schritt 5.4
Kürze die gemeinsamen Faktoren.
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Faktorisiere aus heraus.
Schritt 5.4.3
Faktorisiere aus heraus.
Schritt 5.4.4
Faktorisiere aus heraus.
Schritt 5.4.5
Faktorisiere aus heraus.
Schritt 5.4.6
Kürze den gemeinsamen Faktor.
Schritt 5.4.7
Forme den Ausdruck um.
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Faktorisiere aus heraus.
Schritt 6.3
Faktorisiere aus heraus.
Schritt 7
Schritt 7.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 7.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 8
Schritt 8.1
Faktorisiere aus heraus.
Schritt 8.2
Kürze den gemeinsamen Faktor.
Schritt 8.3
Forme den Ausdruck um.
Schritt 9
Mutltipliziere mit .
Schritt 10
Wende das Distributivgesetz an.
Schritt 11
Mutltipliziere mit .
Schritt 12
Zerlege den Bruch in zwei Brüche.