Algebra Beispiele

x 구하기 logarithmische Basis 3 von 18x^3- logarithmische Basis 3 von 2x = logarithmische Basis 3 von 144
Schritt 1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.3
Forme den Ausdruck um.
Schritt 1.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Potenziere mit .
Schritt 1.3.2.2
Faktorisiere aus heraus.
Schritt 1.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.4
Forme den Ausdruck um.
Schritt 1.3.2.5
Dividiere durch .
Schritt 2
Damit die Gleichung erfüllt ist, müssen die Argumente der Logarithmen auf beiden Seiten der Gleichung gleich sein.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Dividiere durch .
Schritt 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe als um.
Schritt 3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Schließe die Lösungen aus, die nicht erfüllen.