Gib eine Aufgabe ein ...
Algebra Beispiele
,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 1.3
Vereinfache .
Schritt 1.3.1
Schreibe als um.
Schritt 1.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2
Schritt 2.1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.1.1
Ersetze alle in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Schritt 2.1.2.1
Vereinfache .
Schritt 2.1.2.1.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1.1
Schreibe als um.
Schritt 2.1.2.1.1.1.1
Benutze , um als neu zu schreiben.
Schritt 2.1.2.1.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.1.1.1.3
Kombiniere und .
Schritt 2.1.2.1.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.1.1.4.2
Forme den Ausdruck um.
Schritt 2.1.2.1.1.1.5
Vereinfache.
Schritt 2.1.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 2.1.2.1.1.3.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.1.3.1.3
Bringe auf die linke Seite von .
Schritt 2.1.2.1.1.3.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.1.2.1.1.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.2.1.1.3.1.5.1
Bewege .
Schritt 2.1.2.1.1.3.1.5.2
Mutltipliziere mit .
Schritt 2.1.2.1.1.3.2
Addiere und .
Schritt 2.1.2.1.1.3.3
Addiere und .
Schritt 2.1.2.1.1.4
Schreibe als um.
Schritt 2.1.2.1.1.5
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.2.1.1.5.1
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.5.2
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.5.3
Wende das Distributivgesetz an.
Schritt 2.1.2.1.1.6
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.1.1.6.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1.6.1.1
Mutltipliziere mit .
Schritt 2.1.2.1.1.6.1.2
Bringe auf die linke Seite von .
Schritt 2.1.2.1.1.6.1.3
Schreibe als um.
Schritt 2.1.2.1.1.6.1.4
Schreibe als um.
Schritt 2.1.2.1.1.6.1.5
Mutltipliziere mit .
Schritt 2.1.2.1.1.6.2
Subtrahiere von .
Schritt 2.1.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.1.2.1.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.1.2.1.2.1.1
Addiere und .
Schritt 2.1.2.1.2.1.2
Addiere und .
Schritt 2.1.2.1.2.2
Addiere und .
Schritt 2.2
Löse in nach auf.
Schritt 2.2.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.2.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.1.2
Subtrahiere von .
Schritt 2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.1.2
Dividiere durch .
Schritt 2.2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.2.3.1
Dividiere durch .
Schritt 2.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 2.3.1
Ersetze alle in durch .
Schritt 2.3.2
Vereinfache .
Schritt 2.3.2.1
Vereinfache die linke Seite.
Schritt 2.3.2.1.1
Entferne die Klammern.
Schritt 2.3.2.2
Vereinfache die rechte Seite.
Schritt 2.3.2.2.1
Vereinfache .
Schritt 2.3.2.2.1.1
Addiere und .
Schritt 2.3.2.2.1.2
Mutltipliziere mit .
Schritt 2.3.2.2.1.3
Subtrahiere von .
Schritt 2.3.2.2.1.4
Mutltipliziere mit .
Schritt 2.3.2.2.1.5
Schreibe als um.
Schritt 2.3.2.2.1.6
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 5