Algebra Beispiele

x 구하기 x=2 Quadratwurzel von x-1
Schritt 1
Da die Wurzel auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass sie sich auf der linken Seite der Gleichung befindet.
Schritt 2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.2.2
Forme den Ausdruck um.
Schritt 3.2.1.4
Vereinfache.
Schritt 3.2.1.5
Wende das Distributivgesetz an.
Schritt 3.2.1.6
Mutltipliziere mit .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Stelle den Ausdruck um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Bewege .
Schritt 4.2.1.1.2
Stelle und um.
Schritt 4.2.1.2
Faktorisiere aus heraus.
Schritt 4.2.1.3
Faktorisiere aus heraus.
Schritt 4.2.1.4
Schreibe als um.
Schritt 4.2.1.5
Faktorisiere aus heraus.
Schritt 4.2.1.6
Faktorisiere aus heraus.
Schritt 4.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Schreibe als um.
Schritt 4.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.2.2.3
Schreibe das Polynom neu.
Schritt 4.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Teile jeden Ausdruck in durch .
Schritt 4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.3.2.2
Dividiere durch .
Schritt 4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Dividiere durch .
Schritt 4.4
Setze gleich .
Schritt 4.5
Addiere zu beiden Seiten der Gleichung.