Algebra Beispiele

Löse durch Faktorisieren x^4-11x^2+28=0
Schritt 1
Schreibe als um.
Schritt 2
Es sei . Ersetze für alle .
Schritt 3
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Ersetze alle durch .
Schritt 5
Schreibe als um.
Schritt 6
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6.2
Entferne unnötige Klammern.
Schritt 7
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 8
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Setze gleich .
Schritt 8.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 8.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 8.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 8.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 8.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 9
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Setze gleich .
Schritt 9.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 10
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Setze gleich .
Schritt 10.2
Addiere zu beiden Seiten der Gleichung.
Schritt 11
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: