Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Da die Wurzel auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass sie sich auf der linken Seite der Gleichung befindet.
Schritt 2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache .
Schritt 3.2.1.1
Multipliziere die Exponenten in .
Schritt 3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Vereinfache.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Multipliziere die Exponenten in .
Schritt 3.3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Faktorisiere die linke Seite der Gleichung.
Schritt 4.2.1
Faktorisiere aus heraus.
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Faktorisiere aus heraus.
Schritt 4.2.1.3
Faktorisiere aus heraus.
Schritt 4.2.1.4
Faktorisiere aus heraus.
Schritt 4.2.2
Schreibe als um.
Schritt 4.2.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 4.2.4
Faktorisiere.
Schritt 4.2.4.1
Vereinfache.
Schritt 4.2.4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.4.1.2
Mutltipliziere mit .
Schritt 4.2.4.2
Entferne unnötige Klammern.
Schritt 4.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.4
Setze gleich .
Schritt 4.5
Setze gleich und löse nach auf.
Schritt 4.5.1
Setze gleich .
Schritt 4.5.2
Löse nach auf.
Schritt 4.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.5.2.2.2
Vereinfache die linke Seite.
Schritt 4.5.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.5.2.2.2.2
Dividiere durch .
Schritt 4.5.2.2.3
Vereinfache die rechte Seite.
Schritt 4.5.2.2.3.1
Dividiere durch .
Schritt 4.6
Setze gleich und löse nach auf.
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Löse nach auf.
Schritt 4.6.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.6.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.6.2.3
Vereinfache.
Schritt 4.6.2.3.1
Vereinfache den Zähler.
Schritt 4.6.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.6.2.3.1.2
Multipliziere .
Schritt 4.6.2.3.1.2.1
Mutltipliziere mit .
Schritt 4.6.2.3.1.2.2
Mutltipliziere mit .
Schritt 4.6.2.3.1.3
Subtrahiere von .
Schritt 4.6.2.3.1.4
Schreibe als um.
Schritt 4.6.2.3.1.5
Schreibe als um.
Schritt 4.6.2.3.1.6
Schreibe als um.
Schritt 4.6.2.3.2
Mutltipliziere mit .
Schritt 4.6.2.4
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.