Algebra Beispiele

x 구하기 x^2 = square root of x
Schritt 1
Da die Wurzel auf der rechten Seite der Gleichung ist, vertausche die Seiten, sodass sie sich auf der linken Seite der Gleichung befindet.
Schritt 2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 3
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Vereinfache.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Faktorisiere aus heraus.
Schritt 4.2.1.3
Faktorisiere aus heraus.
Schritt 4.2.1.4
Faktorisiere aus heraus.
Schritt 4.2.2
Schreibe als um.
Schritt 4.2.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 4.2.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.4.1.2
Mutltipliziere mit .
Schritt 4.2.4.2
Entferne unnötige Klammern.
Schritt 4.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.4
Setze gleich .
Schritt 4.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Setze gleich .
Schritt 4.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.5.2.2.2.2
Dividiere durch .
Schritt 4.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.2.3.1
Dividiere durch .
Schritt 4.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.6.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.6.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.6.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.3.1.2.1
Mutltipliziere mit .
Schritt 4.6.2.3.1.2.2
Mutltipliziere mit .
Schritt 4.6.2.3.1.3
Subtrahiere von .
Schritt 4.6.2.3.1.4
Schreibe als um.
Schritt 4.6.2.3.1.5
Schreibe als um.
Schritt 4.6.2.3.1.6
Schreibe als um.
Schritt 4.6.2.3.2
Mutltipliziere mit .
Schritt 4.6.2.4
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.