Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Vereinfache .
Schritt 2.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2
Vereinfache.
Schritt 2.1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.1.2.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.1.2.3
Bringe auf die linke Seite von .
Schritt 2.1.3
Vereinfache jeden Term.
Schritt 2.1.3.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.3.1.1
Bewege .
Schritt 2.1.3.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.1.3
Addiere und .
Schritt 2.1.3.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.3.2.1
Bewege .
Schritt 2.1.3.2.2
Mutltipliziere mit .
Schritt 2.1.3.2.2.1
Potenziere mit .
Schritt 2.1.3.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.2.3
Addiere und .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere.
Schritt 2.2.2.1
Faktorisiere durch Gruppieren.
Schritt 2.2.2.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.2.1.1.2
Schreibe um als plus
Schritt 2.2.2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.2.2.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.2.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.2.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.2.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2.2.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4.2.2
Vereinfache .
Schritt 2.4.2.2.1
Schreibe als um.
Schritt 2.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.4.2.2.3
Plus oder Minus ist .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Setze gleich und löse nach auf.
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Löse nach auf.
Schritt 2.6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2.2.2
Vereinfache die linke Seite.
Schritt 2.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.2.1.2
Dividiere durch .
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3