Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Schritt 2.3.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 2.3.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 2.3.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.4.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.4.2.4
Vereinfache .
Schritt 2.4.2.4.1
Schreibe als um.
Schritt 2.4.2.4.2
Jede Wurzel von ist .
Schritt 2.4.2.4.3
Mutltipliziere mit .
Schritt 2.4.2.4.4
Vereinige und vereinfache den Nenner.
Schritt 2.4.2.4.4.1
Mutltipliziere mit .
Schritt 2.4.2.4.4.2
Potenziere mit .
Schritt 2.4.2.4.4.3
Potenziere mit .
Schritt 2.4.2.4.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.2.4.4.5
Addiere und .
Schritt 2.4.2.4.4.6
Schreibe als um.
Schritt 2.4.2.4.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.4.2.4.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.2.4.4.6.3
Kombiniere und .
Schritt 2.4.2.4.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.4.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.4.4.6.4.2
Forme den Ausdruck um.
Schritt 2.4.2.4.4.6.5
Berechne den Exponenten.
Schritt 2.4.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.4.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Schritt 4