Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.1.1
Teile jeden Ausdruck in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.3
Vereinfache die rechte Seite.
Schritt 2.1.3.1
Dividiere durch .
Schritt 2.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Der genau Wert von ist .
Schritt 2.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2
Vereinfache die linke Seite.
Schritt 2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.2
Forme den Ausdruck um.
Schritt 2.4.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2
Dividiere durch .
Schritt 2.4.3
Vereinfache die rechte Seite.
Schritt 2.4.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.4.3.1.1
Faktorisiere aus heraus.
Schritt 2.4.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.4.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.4.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.4.3.1.2.3
Forme den Ausdruck um.
Schritt 2.4.3.2
Dividiere durch .
Schritt 2.5
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 2.6
Löse nach auf.
Schritt 2.6.1
Addiere und .
Schritt 2.6.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.6.2.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2.2
Vereinfache die linke Seite.
Schritt 2.6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.1.2
Forme den Ausdruck um.
Schritt 2.6.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.6.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.2.2
Dividiere durch .
Schritt 2.6.2.3
Vereinfache die rechte Seite.
Schritt 2.6.2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.6.2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.3.1.2
Forme den Ausdruck um.
Schritt 2.7
Ermittele die Periode von .
Schritt 2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 2.7.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 2.7.4
Kürze den gemeinsamen Faktor von .
Schritt 2.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.7.4.2
Forme den Ausdruck um.
Schritt 2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 2.9
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 3