Algebra Beispiele

Solve the System of Equations y=x^2 2y+6=2(x+3)
Schritt 1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Ersetze alle in durch .
Schritt 1.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Multipliziere mit .
Schritt 1.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1.1
Wende das Distributivgesetz an.
Schritt 1.2.2.1.2
Mutltipliziere mit .
Schritt 2
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Subtrahiere von .
Schritt 2.3.2
Addiere und .
Schritt 2.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Faktorisiere aus heraus.
Schritt 2.4.2
Faktorisiere aus heraus.
Schritt 2.4.3
Faktorisiere aus heraus.
Schritt 2.5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.6
Setze gleich .
Schritt 2.7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Setze gleich .
Schritt 2.7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.8
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze alle in durch .
Schritt 3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7