Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 2
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Multipliziere die Exponenten in .
Schritt 2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.2.1.2
Vereinfache.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache .
Schritt 2.3.1.1
Wende die Produktregel auf an.
Schritt 2.3.1.2
Potenziere mit .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Faktorisiere aus heraus.
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Schritt 3.4.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4.2.2
Vereinfache .
Schritt 3.4.2.2.1
Schreibe als um.
Schritt 3.4.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.4.2.2.3
Plus oder Minus ist .
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Schritt 3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2.2
Vereinfache die linke Seite.
Schritt 3.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.2.1.2
Dividiere durch .
Schritt 3.5.2.2.3
Vereinfache die rechte Seite.
Schritt 3.5.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: