Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.2.4
Addiere und .
Schritt 1.2.5
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.6.4
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Subtrahiere von .
Schritt 2.2.1.2
Potenziere mit .
Schritt 2.2.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.2.4
Vereinfache .
Schritt 2.2.4.1
Schreibe als um.
Schritt 2.2.4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.2.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.2.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4