Algebra Beispiele

x 구하기 x-81x^-3=0
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.2
Kombiniere und .
Schritt 1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1.1
Potenziere mit .
Schritt 3.2.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.1.1.2
Addiere und .
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.3
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Schreibe als um.
Schritt 4.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.