Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Die Funktion kann ermittelt werden durch Bestimmen des unbestimmten Integrals der Ableitung .
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Wende die Konstantenregel an.
Schritt 6
Vereinfache.
Schritt 7
Ersetze alle durch .
Schritt 8
Die Funktion wird vom Integral der Ableitung der Funktion abgeleitet. Dies ergibt sich aus dem Fundamentalsatz der Analysis.