Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.2.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Dividiere durch .
Schritt 1.2.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.3.1.3
Dividiere durch .
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Schreibe als um.
Schritt 2.2.1.1.3.1.3
Bringe auf die linke Seite von .
Schritt 2.2.1.1.3.1.4
Schreibe als um.
Schritt 2.2.1.1.3.1.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.1.3.1.5.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.1.3.1.5.2
Addiere und .
Schritt 2.2.1.1.3.2
Subtrahiere von .
Schritt 2.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.2.1.2.1
Subtrahiere von .
Schritt 2.2.1.2.2
Addiere und .
Schritt 3
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache .
Schritt 3.3.1
Schreibe als um.
Schritt 3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Addiere und .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8