Algebra Beispiele

Ermittle die Umkehrfunktion f(x)=((x^3+7)^(1/5))/7
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2
Forme den Ausdruck um.
Schritt 3.4
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 3.5
Vereinfache den Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.5.1.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.1.1.1.2.2
Forme den Ausdruck um.
Schritt 3.5.1.1.2
Vereinfache.
Schritt 3.5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1.1
Wende die Produktregel auf an.
Schritt 3.5.2.1.2
Potenziere mit .
Schritt 3.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.6.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.6.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.1
Faktorisiere aus heraus.
Schritt 3.6.3.2
Faktorisiere aus heraus.
Schritt 3.6.3.3
Faktorisiere aus heraus.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Wende die Produktregel auf an.
Schritt 5.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.4.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.1.2.2
Forme den Ausdruck um.
Schritt 5.2.4.2
Vereinfache.
Schritt 5.2.5
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Potenziere mit .
Schritt 5.2.5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.2.1
Faktorisiere aus heraus.
Schritt 5.2.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.2.3
Forme den Ausdruck um.
Schritt 5.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.7
Kombiniere und .
Schritt 5.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.9
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.9.1
Mutltipliziere mit .
Schritt 5.2.9.2
Subtrahiere von .
Schritt 5.2.9.3
Addiere und .
Schritt 5.2.10
Kombiniere und .
Schritt 5.2.11
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.11.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.11.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.11.1.2
Forme den Ausdruck um.
Schritt 5.2.11.2
Dividiere durch .
Schritt 5.2.12
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1.1
Benutze , um als neu zu schreiben.
Schritt 5.3.3.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.3.1.1.3
Kombiniere und .
Schritt 5.3.3.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.1.1.4.2
Forme den Ausdruck um.
Schritt 5.3.3.1.1.5
Vereinfache.
Schritt 5.3.3.1.2
Wende das Distributivgesetz an.
Schritt 5.3.3.1.3
Mutltipliziere mit .
Schritt 5.3.3.1.4
Mutltipliziere mit .
Schritt 5.3.3.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Addiere und .
Schritt 5.3.3.2.2
Addiere und .
Schritt 5.3.3.3
Wende die Produktregel auf an.
Schritt 5.3.3.4
Schreibe als um.
Schritt 5.3.3.5
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.6.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.6.2
Forme den Ausdruck um.
Schritt 5.3.3.7
Berechne den Exponenten.
Schritt 5.3.3.8
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.3.8.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.8.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.8.2.2
Forme den Ausdruck um.
Schritt 5.3.3.9
Vereinfache.
Schritt 5.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .