Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Schreibe die Gleichung in Scheitelform um.
Schritt 2.1.1
Vereinfache .
Schritt 2.1.1.1
Bewege .
Schritt 2.1.1.2
Stelle und um.
Schritt 2.1.2
Wende die quadratische Ergänzung auf an.
Schritt 2.1.2.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 2.1.2.2
Betrachte die Scheitelform einer Parabel.
Schritt 2.1.2.3
Ermittle den Wert von mithilfe der Formel .
Schritt 2.1.2.3.1
Setze die Werte von und in die Formel ein.
Schritt 2.1.2.3.2
Vereinfache die rechte Seite.
Schritt 2.1.2.3.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.3.2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2.3.2.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 2.1.2.3.2.2
Mutltipliziere mit .
Schritt 2.1.2.4
Ermittle den Wert von mithilfe der Formel .
Schritt 2.1.2.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 2.1.2.4.2
Vereinfache die rechte Seite.
Schritt 2.1.2.4.2.1
Vereinfache jeden Term.
Schritt 2.1.2.4.2.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.2.4.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.2.4.2.1.1.2
Bringe die negative Eins aus dem Nenner von .
Schritt 2.1.2.4.2.1.2
Multipliziere .
Schritt 2.1.2.4.2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.4.2.1.2.2
Mutltipliziere mit .
Schritt 2.1.2.4.2.2
Addiere und .
Schritt 2.1.2.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 2.1.3
Setze gleich der neuen rechten Seite.
Schritt 2.2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 2.3
Da der Wert von negativ ist, ist die Parabel nach links offen.
Nach links offen
Schritt 2.4
Ermittle den Scheitelpunkt .
Schritt 2.5
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Schritt 2.5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 2.5.2
Setze den Wert von in die Formel ein.
Schritt 2.5.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.5.3.1
Schreibe als um.
Schritt 2.5.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6
Ermittle den Brennpunkt.
Schritt 2.6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur x-Koordinate gefunden werden, wenn die Parabel nach links oder rechts geöffnet ist.
Schritt 2.6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 2.7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 2.8
Finde die Leitlinie.
Schritt 2.8.1
Die Leitlinie einer Parabel ist die vertikale Gerade, die durch Subtrahieren von von der x-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach links oder rechts geöffnet ist.
Schritt 2.8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 2.9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach links offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Richtung: Nach links offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 3
Schritt 3.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Vereinfache jeden Term.
Schritt 3.1.2.1.1
Subtrahiere von .
Schritt 3.1.2.1.2
Mutltipliziere mit .
Schritt 3.1.2.2
Die endgültige Lösung ist .
Schritt 3.1.3
Konvertiere nach Dezimal.
Schritt 3.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2.2
Vereinfache das Ergebnis.
Schritt 3.2.2.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1
Subtrahiere von .
Schritt 3.2.2.1.2
Mutltipliziere mit .
Schritt 3.2.2.2
Die endgültige Lösung ist .
Schritt 3.2.3
Konvertiere nach Dezimal.
Schritt 3.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Schritt 3.3.2.1
Vereinfache jeden Term.
Schritt 3.3.2.1.1
Subtrahiere von .
Schritt 3.3.2.1.2
Mutltipliziere mit .
Schritt 3.3.2.1.3
Jede Wurzel von ist .
Schritt 3.3.2.2
Addiere und .
Schritt 3.3.2.3
Die endgültige Lösung ist .
Schritt 3.3.3
Konvertiere nach Dezimal.
Schritt 3.4
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.4.2
Vereinfache das Ergebnis.
Schritt 3.4.2.1
Vereinfache jeden Term.
Schritt 3.4.2.1.1
Subtrahiere von .
Schritt 3.4.2.1.2
Mutltipliziere mit .
Schritt 3.4.2.1.3
Jede Wurzel von ist .
Schritt 3.4.2.1.4
Mutltipliziere mit .
Schritt 3.4.2.2
Subtrahiere von .
Schritt 3.4.2.3
Die endgültige Lösung ist .
Schritt 3.4.3
Konvertiere nach Dezimal.
Schritt 3.5
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Schritt 4
Zeichne die Parabel anhand ihrer Eigenschaften und der ausgewählten Punkte.
Richtung: Nach links offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 5