Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Vertausche die Variablen.
Schritt 2
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Multipliziere beide Seiten mit .
Schritt 2.3
Vereinfache.
Schritt 2.3.1
Vereinfache die linke Seite.
Schritt 2.3.1.1
Vereinfache .
Schritt 2.3.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.1.2
Forme den Ausdruck um.
Schritt 2.3.1.1.2
Stelle und um.
Schritt 2.3.2
Vereinfache die rechte Seite.
Schritt 2.3.2.1
Bringe auf die linke Seite von .
Schritt 2.4
Löse nach auf.
Schritt 2.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.4.2.2.2
Dividiere durch .
Schritt 2.4.2.3
Vereinfache die rechte Seite.
Schritt 2.4.2.3.1
Vereinfache jeden Term.
Schritt 2.4.2.3.1.1
Bringe die negative Eins aus dem Nenner von .
Schritt 2.4.2.3.1.2
Schreibe als um.
Schritt 2.4.2.3.1.3
Mutltipliziere mit .
Schritt 2.4.2.3.1.4
Dividiere durch .
Schritt 3
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 4
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache jeden Term.
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.3.1.1
Faktorisiere aus heraus.
Schritt 4.2.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.1.3
Forme den Ausdruck um.
Schritt 4.2.3.2
Wende das Distributivgesetz an.
Schritt 4.2.3.3
Mutltipliziere mit .
Schritt 4.2.3.4
Multipliziere .
Schritt 4.2.3.4.1
Mutltipliziere mit .
Schritt 4.2.3.4.2
Mutltipliziere mit .
Schritt 4.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.2.4.1
Addiere und .
Schritt 4.2.4.2
Addiere und .
Schritt 4.3
Berechne .
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereinfache den Zähler.
Schritt 4.3.3.1
Wende das Distributivgesetz an.
Schritt 4.3.3.2
Mutltipliziere mit .
Schritt 4.3.3.3
Mutltipliziere mit .
Schritt 4.3.3.4
Subtrahiere von .
Schritt 4.3.3.5
Addiere und .
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Dividiere durch .
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .