Algebra Beispiele

Ermittle die Umkehrfunktion f^-1(x)=(2x+6)/(x+4)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.3
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.3.2
Entferne die Klammern.
Schritt 3.3.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Multipliziere jeden Term in mit .
Schritt 3.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Forme den Ausdruck um.
Schritt 3.4.2.2
Wende das Distributivgesetz an.
Schritt 3.4.2.3
Mutltipliziere mit .
Schritt 3.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Wende das Distributivgesetz an.
Schritt 3.4.3.2
Bringe auf die linke Seite von .
Schritt 3.5
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.3.1
Faktorisiere aus heraus.
Schritt 3.5.3.2
Faktorisiere aus heraus.
Schritt 3.5.3.3
Faktorisiere aus heraus.
Schritt 3.5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.1
Teile jeden Ausdruck in durch .
Schritt 3.5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.4.2.1.2
Dividiere durch .
Schritt 3.5.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5.4.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.3.2.1
Faktorisiere aus heraus.
Schritt 3.5.4.3.2.2
Faktorisiere aus heraus.
Schritt 3.5.4.3.2.3
Faktorisiere aus heraus.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.3
Faktorisiere aus heraus.
Schritt 5.2.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.2.2
Faktorisiere aus heraus.
Schritt 5.2.3.2.3
Faktorisiere aus heraus.
Schritt 5.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1.1
Kombiniere und .
Schritt 5.2.4.1.2
Mutltipliziere mit .
Schritt 5.2.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.4.3
Kombiniere und .
Schritt 5.2.4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4.5
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.5.1
Wende das Distributivgesetz an.
Schritt 5.2.4.5.2
Mutltipliziere mit .
Schritt 5.2.4.5.3
Wende das Distributivgesetz an.
Schritt 5.2.4.5.4
Mutltipliziere mit .
Schritt 5.2.4.5.5
Subtrahiere von .
Schritt 5.2.4.5.6
Subtrahiere von .
Schritt 5.2.4.5.7
Addiere und .
Schritt 5.2.5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.5.3
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.5.3.1.2
Faktorisiere aus heraus.
Schritt 5.2.5.3.2
Wende das Distributivgesetz an.
Schritt 5.2.5.3.3
Mutltipliziere mit .
Schritt 5.2.5.3.4
Subtrahiere von .
Schritt 5.2.5.3.5
Addiere und .
Schritt 5.2.5.3.6
Subtrahiere von .
Schritt 5.2.5.4
Mutltipliziere mit .
Schritt 5.2.6
Kombiniere und .
Schritt 5.2.7
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.8.1
Faktorisiere aus heraus.
Schritt 5.2.8.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.8.3
Forme den Ausdruck um.
Schritt 5.2.9
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.9.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.9.2
Forme den Ausdruck um.
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Faktorisiere aus heraus.
Schritt 5.3.3.2
Faktorisiere aus heraus.
Schritt 5.3.3.3
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.3.1
Faktorisiere aus heraus.
Schritt 5.3.3.3.2
Faktorisiere aus heraus.
Schritt 5.3.3.3.3
Faktorisiere aus heraus.
Schritt 5.3.3.3.4
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.3.5
Forme den Ausdruck um.
Schritt 5.3.4
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Mutltipliziere mit .
Schritt 5.3.4.2
Kombinieren.
Schritt 5.3.5
Wende das Distributivgesetz an.
Schritt 5.3.6
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.1.2
Forme den Ausdruck um.
Schritt 5.3.6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.6.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.6.2.2
Forme den Ausdruck um.
Schritt 5.3.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.7.1
Wende das Distributivgesetz an.
Schritt 5.3.7.2
Mutltipliziere mit .
Schritt 5.3.7.3
Mutltipliziere mit .
Schritt 5.3.7.4
Wende das Distributivgesetz an.
Schritt 5.3.7.5
Mutltipliziere mit .
Schritt 5.3.7.6
Mutltipliziere mit .
Schritt 5.3.7.7
Subtrahiere von .
Schritt 5.3.7.8
Addiere und .
Schritt 5.3.7.9
Addiere und .
Schritt 5.3.8
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.8.1
Wende das Distributivgesetz an.
Schritt 5.3.8.2
Mutltipliziere mit .
Schritt 5.3.8.3
Mutltipliziere mit .
Schritt 5.3.8.4
Subtrahiere von .
Schritt 5.3.8.5
Subtrahiere von .
Schritt 5.3.8.6
Addiere und .
Schritt 5.3.9
Dividiere durch .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .