Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 1.2.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 1.2.5
Löse nach auf.
Schritt 1.2.5.1
Schreibe die Gleichung als um.
Schritt 1.2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.5.2.2
Vereinfache die linke Seite.
Schritt 1.2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.2.1.2
Dividiere durch .
Schritt 1.2.5.2.3
Vereinfache die rechte Seite.
Schritt 1.2.5.2.3.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.2.5.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Entferne die Klammern.
Schritt 2.2.2
Vereinfache die rechte Seite.
Schritt 2.2.2.1
Mutltipliziere mit .
Schritt 2.2.2.2
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 2.3
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4