Algebra Beispiele

Finde alle komplexen Lösungen 1/2x^4=648
Schritt 1
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere jeden Term in mit .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kombiniere und .
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2
Forme den Ausdruck um.
Schritt 1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Schreibe als um.
Schritt 3.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Schreibe als um.
Schritt 3.4.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.4.2.2
Entferne unnötige Klammern.
Schritt 4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Schreibe als um.
Schritt 5.2.3.2
Schreibe als um.
Schritt 5.2.3.3
Schreibe als um.
Schritt 5.2.3.4
Schreibe als um.
Schritt 5.2.3.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2.3.6
Bringe auf die linke Seite von .
Schritt 5.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze gleich .
Schritt 6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze gleich .
Schritt 7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 8
Die endgültige Lösung sind alle Werte, die wahr machen.