Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze gleich .
Schritt 2
Schritt 2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.2
Setze gleich und löse nach auf.
Schritt 2.2.1
Setze gleich .
Schritt 2.2.2
Löse nach auf.
Schritt 2.2.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.2.2.2
Vereinfache .
Schritt 2.2.2.2.1
Schreibe als um.
Schritt 2.2.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.2.2.2.3
Plus oder Minus ist .
Schritt 2.3
Setze gleich und löse nach auf.
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Schritt 2.3.2.1
Setze gleich .
Schritt 2.3.2.2
Löse nach auf.
Schritt 2.3.2.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.3.2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2.2.2.2
Vereinfache die linke Seite.
Schritt 2.3.2.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.2.2.2.1.2
Dividiere durch .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Schritt 2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.4.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2.2
Vereinfache die linke Seite.
Schritt 2.4.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.4.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.2.2.1.2
Dividiere durch .
Schritt 2.4.2.2.3
Vereinfache die rechte Seite.
Schritt 2.4.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen. Die Multiplizität einer Wurzel gibt an, wie oft die Wurzel auftritt.
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
Schritt 3