Algebra Beispiele

Vereinfache (x^2y+xy^2+y^3)/((x^2)/y-(y^2)/x)
Schritt 1
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Potenziere mit .
Schritt 3.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.4
Forme den Ausdruck um.
Schritt 3.4
Potenziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Addiere und .
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Bewege .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bewege .
Schritt 4.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Potenziere mit .
Schritt 4.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.3
Addiere und .
Schritt 4.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bewege .
Schritt 4.3.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Potenziere mit .
Schritt 4.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.3
Addiere und .
Schritt 4.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Bewege .
Schritt 4.4.2
Mutltipliziere mit .
Schritt 4.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Bewege .
Schritt 4.5.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.1
Potenziere mit .
Schritt 4.5.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.3
Addiere und .
Schritt 4.6
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Faktorisiere aus heraus.
Schritt 4.6.2
Faktorisiere aus heraus.
Schritt 4.6.3
Faktorisiere aus heraus.
Schritt 4.6.4
Faktorisiere aus heraus.
Schritt 4.6.5
Faktorisiere aus heraus.
Schritt 5
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 6
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Stelle die Terme um.
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Forme den Ausdruck um.