Algebra Beispiele

Vereinfache ((6x^3+12x^2-210x)/(x^2-49)*(6x)/(2x^3-50x))÷((x+7)/(x^2-49))
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.1.4
Faktorisiere aus heraus.
Schritt 2.1.5
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 4
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Schreibe als um.
Schritt 4.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.1.4
Forme den Ausdruck um.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Kürze den gemeinsamen Faktor.
Schritt 5.4.3
Forme den Ausdruck um.
Schritt 5.5
Mutltipliziere mit .
Schritt 6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe als um.
Schritt 6.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 7
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.1.2
Forme den Ausdruck um.
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.