Algebra Beispiele

x 구하기 logarithmische Basis 3 von 5+2 logarithmische Basis 3 von x = logarithmische Basis 3 von 125
Schritt 1
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 2
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3
Forme den Ausdruck um.
Schritt 4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.1.2
Wende die Produktregel für Logarithmen an, .
Schritt 4.1.3
Kombiniere und .
Schritt 5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 6.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.2
Forme den Ausdruck um.
Schritt 6.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Alles, was mit potenziert wird, ist .
Schritt 6.3.2.1.2
Mutltipliziere mit .
Schritt 6.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Schreibe als um.
Schritt 6.5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Schließe die Lösungen aus, die nicht erfüllen.