Algebra Beispiele

Ermittle die Umkehrfunktion f(x)=((x^7-2)/3)^(1/5)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.1.2
Zerlege den Bruch in zwei Brüche.
Schritt 3.3.1.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.1.4
Vereinfache.
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.4.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.3.1.1.2
Forme den Ausdruck um.
Schritt 3.4.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.4.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.3.2.1.2.2
Forme den Ausdruck um.
Schritt 3.4.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.2
Forme den Ausdruck um.
Schritt 5.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.2
Forme den Ausdruck um.
Schritt 5.2.5
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Addiere und .
Schritt 5.2.5.2
Addiere und .
Schritt 5.2.6
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Benutze , um als neu zu schreiben.
Schritt 5.3.3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.2.2
Forme den Ausdruck um.
Schritt 5.3.3.3
Vereinfache.
Schritt 5.3.3.4
Subtrahiere von .
Schritt 5.3.3.5
Addiere und .
Schritt 5.3.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.1.2
Dividiere durch .
Schritt 5.3.4.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.3.4.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.4.2.2.2
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .