Algebra Beispiele

Stelle graphisch dar y=x^2-|6x+5|
Schritt 1
Bestimme den Scheitelpunkt des Absolutwerts. In diesem Fall ist der Scheitelpunkt für gleich .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2.1.2
Dividiere durch .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1.1
Wende die Produktregel auf an.
Schritt 1.4.1.1.2
Wende die Produktregel auf an.
Schritt 1.4.1.2
Potenziere mit .
Schritt 1.4.1.3
Mutltipliziere mit .
Schritt 1.4.1.4
Potenziere mit .
Schritt 1.4.1.5
Potenziere mit .
Schritt 1.4.1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.6.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.4.1.6.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.1.6.3
Forme den Ausdruck um.
Schritt 1.4.1.7
Addiere und .
Schritt 1.4.1.8
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.4.1.9
Mutltipliziere mit .
Schritt 1.4.2
Addiere und .
Schritt 1.5
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Für jeden Wert, es gibt einen Wert. Wählen Sie einige aus Werte aus der Domäne. Es wäre sinnvoller, die Werte so zu wählen, dass sie in der Nähe des Wert des Absolutwert-Scheitelpunkts.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Potenziere mit .
Schritt 3.1.2.1.2
Mutltipliziere mit .
Schritt 3.1.2.1.3
Addiere und .
Schritt 3.1.2.1.4
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.1.2.1.5
Mutltipliziere mit .
Schritt 3.1.2.2
Subtrahiere von .
Schritt 3.1.2.3
Die endgültige Lösung ist .
Schritt 3.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Potenziere mit .
Schritt 3.2.2.1.2
Mutltipliziere mit .
Schritt 3.2.2.1.3
Addiere und .
Schritt 3.2.2.1.4
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.2.1.5
Mutltipliziere mit .
Schritt 3.2.2.2
Subtrahiere von .
Schritt 3.2.2.3
Die endgültige Lösung ist .
Schritt 3.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Potenziere mit .
Schritt 3.3.2.1.2
Mutltipliziere mit .
Schritt 3.3.2.1.3
Addiere und .
Schritt 3.3.2.1.4
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.3.2.1.5
Mutltipliziere mit .
Schritt 3.3.2.2
Subtrahiere von .
Schritt 3.3.2.3
Die endgültige Lösung ist .
Schritt 3.4
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.4.2.1.2
Mutltipliziere mit .
Schritt 3.4.2.1.3
Addiere und .
Schritt 3.4.2.1.4
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.4.2.1.5
Mutltipliziere mit .
Schritt 3.4.2.2
Subtrahiere von .
Schritt 3.4.2.3
Die endgültige Lösung ist .
Schritt 3.5
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4