Algebra Beispiele

Vereinfache (4+ Quadratwurzel von 12)/(4- Quadratwurzel von 12)
Schritt 1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Schreibe als um.
Schritt 1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Schreibe als um.
Schritt 2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.3
Mutltipliziere mit .
Schritt 3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Faktorisiere aus heraus.
Schritt 3.3
Faktorisiere aus heraus.
Schritt 3.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Kürze den gemeinsamen Faktor.
Schritt 3.4.5
Forme den Ausdruck um.
Schritt 4
Mutltipliziere mit .
Schritt 5
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Multipliziere den Nenner aus unter Verwendung der FOIL-Methode.
Schritt 5.3
Vereinfache.
Schritt 5.4
Dividiere durch .
Schritt 6
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Wende das Distributivgesetz an.
Schritt 6.3
Wende das Distributivgesetz an.
Schritt 7
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Mutltipliziere mit .
Schritt 7.1.2
Bringe auf die linke Seite von .
Schritt 7.1.3
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.1.5
Schreibe als um.
Schritt 7.1.6
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.2
Addiere und .
Schritt 7.3
Addiere und .
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: