Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 1.2
Der genau Wert von ist .
Schritt 1.3
Der genau Wert von ist .
Schritt 1.3.1
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.3.2
Wende das Additionstheorem der Trigonometrie an.
Schritt 1.3.3
Der genau Wert von ist .
Schritt 1.3.4
Der genau Wert von ist .
Schritt 1.3.5
Der genau Wert von ist .
Schritt 1.3.6
Der genau Wert von ist .
Schritt 1.3.7
Vereinfache .
Schritt 1.3.7.1
Vereinfache jeden Term.
Schritt 1.3.7.1.1
Multipliziere .
Schritt 1.3.7.1.1.1
Mutltipliziere mit .
Schritt 1.3.7.1.1.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.3.7.1.1.3
Mutltipliziere mit .
Schritt 1.3.7.1.1.4
Mutltipliziere mit .
Schritt 1.3.7.1.2
Multipliziere .
Schritt 1.3.7.1.2.1
Mutltipliziere mit .
Schritt 1.3.7.1.2.2
Mutltipliziere mit .
Schritt 1.3.7.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4
Multipliziere .
Schritt 1.4.1
Mutltipliziere mit .
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.5
Wende das Distributivgesetz an.
Schritt 1.6
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.7
Multipliziere .
Schritt 1.7.1
Potenziere mit .
Schritt 1.7.2
Potenziere mit .
Schritt 1.7.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.7.4
Addiere und .
Schritt 1.8
Vereinfache jeden Term.
Schritt 1.8.1
Mutltipliziere mit .
Schritt 1.8.2
Schreibe als um.
Schritt 1.8.2.1
Faktorisiere aus heraus.
Schritt 1.8.2.2
Schreibe als um.
Schritt 1.8.3
Ziehe Terme aus der Wurzel heraus.
Schritt 1.8.4
Schreibe als um.
Schritt 1.8.4.1
Benutze , um als neu zu schreiben.
Schritt 1.8.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.8.4.3
Kombiniere und .
Schritt 1.8.4.4
Kürze den gemeinsamen Faktor von .
Schritt 1.8.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.8.4.4.2
Forme den Ausdruck um.
Schritt 1.8.4.5
Berechne den Exponenten.
Schritt 1.8.5
Mutltipliziere mit .
Schritt 1.9
Kürze den gemeinsamen Teiler von und .
Schritt 1.9.1
Faktorisiere aus heraus.
Schritt 1.9.2
Faktorisiere aus heraus.
Schritt 1.9.3
Faktorisiere aus heraus.
Schritt 1.9.4
Kürze die gemeinsamen Faktoren.
Schritt 1.9.4.1
Faktorisiere aus heraus.
Schritt 1.9.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.9.4.3
Forme den Ausdruck um.
Schritt 1.10
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.11
Der genau Wert von ist .
Schritt 1.12
Der genau Wert von ist .
Schritt 1.12.1
Teile in zwei Winkel, für die die Werte der sechs trigonometrischen Funktionen bekannt sind.
Schritt 1.12.2
Wende die Identitätsgleichung für Winkelsummen an.
Schritt 1.12.3
Der genau Wert von ist .
Schritt 1.12.4
Der genau Wert von ist .
Schritt 1.12.5
Der genau Wert von ist .
Schritt 1.12.6
Der genau Wert von ist .
Schritt 1.12.7
Vereinfache .
Schritt 1.12.7.1
Vereinfache jeden Term.
Schritt 1.12.7.1.1
Multipliziere .
Schritt 1.12.7.1.1.1
Mutltipliziere mit .
Schritt 1.12.7.1.1.2
Mutltipliziere mit .
Schritt 1.12.7.1.2
Multipliziere .
Schritt 1.12.7.1.2.1
Mutltipliziere mit .
Schritt 1.12.7.1.2.2
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.12.7.1.2.3
Mutltipliziere mit .
Schritt 1.12.7.1.2.4
Mutltipliziere mit .
Schritt 1.12.7.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.13
Multipliziere .
Schritt 1.13.1
Mutltipliziere mit .
Schritt 1.13.2
Mutltipliziere mit .
Schritt 1.14
Wende das Distributivgesetz an.
Schritt 1.15
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.16
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 1.17
Vereinfache jeden Term.
Schritt 1.17.1
Mutltipliziere mit .
Schritt 1.17.2
Schreibe als um.
Schritt 1.17.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.17.4
Mutltipliziere mit .
Schritt 1.17.5
Schreibe als um.
Schritt 1.17.5.1
Faktorisiere aus heraus.
Schritt 1.17.5.2
Schreibe als um.
Schritt 1.17.6
Ziehe Terme aus der Wurzel heraus.
Schritt 1.18
Kürze den gemeinsamen Teiler von und .
Schritt 1.18.1
Faktorisiere aus heraus.
Schritt 1.18.2
Faktorisiere aus heraus.
Schritt 1.18.3
Faktorisiere aus heraus.
Schritt 1.18.4
Kürze die gemeinsamen Faktoren.
Schritt 1.18.4.1
Faktorisiere aus heraus.
Schritt 1.18.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.18.4.3
Forme den Ausdruck um.
Schritt 2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Wende das Distributivgesetz an.
Schritt 3.4
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Subtrahiere von .
Schritt 4.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Subtrahiere von .
Schritt 4.3
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.3
Forme den Ausdruck um.
Schritt 4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: