Algebra Beispiele

Solve the System of Equations 2x^2+3y^2=4 y=2x
Schritt 1
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Ersetze alle in durch .
Schritt 1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1.1
Wende die Produktregel auf an.
Schritt 1.2.1.1.2
Potenziere mit .
Schritt 1.2.1.1.3
Mutltipliziere mit .
Schritt 1.2.1.2
Addiere und .
Schritt 2
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Teile jeden Ausdruck in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1.1
Faktorisiere aus heraus.
Schritt 2.1.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.3.1.2.3
Forme den Ausdruck um.
Schritt 2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Schreibe als um.
Schritt 2.3.2
Mutltipliziere mit .
Schritt 2.3.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Potenziere mit .
Schritt 2.3.3.3
Potenziere mit .
Schritt 2.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 2.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.3.6.3
Kombiniere und .
Schritt 2.3.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.6.4.2
Forme den Ausdruck um.
Schritt 2.3.3.6.5
Berechne den Exponenten.
Schritt 2.3.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.3.4.2
Mutltipliziere mit .
Schritt 2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze alle in durch .
Schritt 3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Kombiniere und .
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Mutltipliziere mit .
Schritt 4.2.1.1.2
Kombiniere und .
Schritt 4.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7