Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Ersetze alle in durch .
Schritt 1.2
Vereinfache die linke Seite.
Schritt 1.2.1
Vereinfache .
Schritt 1.2.1.1
Vereinfache jeden Term.
Schritt 1.2.1.1.1
Wende die Produktregel auf an.
Schritt 1.2.1.1.2
Potenziere mit .
Schritt 1.2.1.1.3
Mutltipliziere mit .
Schritt 1.2.1.2
Addiere und .
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.1.1
Teile jeden Ausdruck in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.3
Vereinfache die rechte Seite.
Schritt 2.1.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.3.1.1
Faktorisiere aus heraus.
Schritt 2.1.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.3.1.2.3
Forme den Ausdruck um.
Schritt 2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.3
Vereinfache .
Schritt 2.3.1
Schreibe als um.
Schritt 2.3.2
Mutltipliziere mit .
Schritt 2.3.3
Vereinige und vereinfache den Nenner.
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Potenziere mit .
Schritt 2.3.3.3
Potenziere mit .
Schritt 2.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Schreibe als um.
Schritt 2.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 2.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.3.6.3
Kombiniere und .
Schritt 2.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.6.4.2
Forme den Ausdruck um.
Schritt 2.3.3.6.5
Berechne den Exponenten.
Schritt 2.3.4
Vereinfache den Zähler.
Schritt 2.3.4.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.3.4.2
Mutltipliziere mit .
Schritt 2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Schritt 3.1
Ersetze alle in durch .
Schritt 3.2
Vereinfache die rechte Seite.
Schritt 3.2.1
Kombiniere und .
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Multipliziere .
Schritt 4.2.1.1.1
Mutltipliziere mit .
Schritt 4.2.1.1.2
Kombiniere und .
Schritt 4.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7