Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.1.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.1.3.1.2.1
Bewege .
Schritt 2.2.1.1.3.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.5
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.6
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.7
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Addiere und .
Schritt 2.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.2.1.2.1
Addiere und .
Schritt 2.2.1.2.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 3.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.3
Setze gleich und löse nach auf.
Schritt 3.3.1
Setze gleich .
Schritt 3.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.4
Setze gleich und löse nach auf.
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Mutltipliziere mit .
Schritt 5.2.1.2
Subtrahiere von .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8