Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Die Funktion kann ermittelt werden durch Bestimmen des unbestimmten Integrals der Ableitung .
Schritt 2
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 2.3
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Schritt 5.1
Schreibe als um.
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 5.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.3.1
Faktorisiere aus heraus.
Schritt 5.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 5.2.3.2.1
Faktorisiere aus heraus.
Schritt 5.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.2.3
Forme den Ausdruck um.
Schritt 6
Die Funktion wird vom Integral der Ableitung der Funktion abgeleitet. Dies ergibt sich aus dem Fundamentalsatz der Analysis.